domingo, 13 de marzo de 2011

Digital 3D, Pantalla 3D

El Digital 3D, simula el efecto que se produce en el ojo humano mientras percibe un objeto tridimensional real. El proceso se genera cuando el proyector digital del cine reproduce las imágenes del ojo izquierdo y derecho a 144 cuadros por segundo, intercaladamente. Los filtros polarizadores, en el caso de los IMAX 3D (especificado abajo) y RealD, La rueda de color, en caso de los Dolby 3D, o un emisor infrarojo en caso de XpanD 3D. Para ver la imagen y decodificarlas, se necesitan de lentes especiales. Debido a la velocidad de cuadros y los lentes utilizados, cada uno de los ojos del espectador recibe una imagen, con puntos de vista distintos, haciendo que el cerebro interprete profundidad mediante la fusión de las imágenes.

En la actualidad, el sistema se está comenzando a usar mucho más, llegando al punto de ser llamado "El futuro del cine". El Número de pantallas ha aumentado significativamente, de manera mundial, y a cada estreno 3D, se abren más.

Asus, presentó en el último trimestre del 2009, uno de los primeros ordenadores 3D, compuesto por las Gafas 3D, el transmisor, con NVIDIA 3D Vision, y una pantalla LCD con 120Hz.

Los principales fabricantes de televisores, tienen anunciado sus nuevos aparatos con la tecnología que permitirá ver imágenes en este nuevo formato en el 2010. Sony, ha creado una división para sacar juegos en Digital 3D durante el 2010.

En España Dygra Films, está produciendo "Holy Night!" en Digital 3D, siendo una de las primeras producciones europeas, a la par que Dreamworks o Pixar en realizar una producción en Digital 3D.

En México, esta la producción de "Brijes" en 3D que llenara las salas digitales de México en el 2010. Siendo esta la primera película digital 3d de México y Latinoamérica, sin embargo, Televisa ya había presentado el partido America-Chivas en el formato digital 3D en salas seleccionadas.


Sistema RealD 3D

El sistema crea la ilusión a partir de la emisión de imágenes intercaladas del ojo izquierdo y derecho, a 144 cuadros por segundo (2 ojos x 24 cuadros x 3 veces cada cuadro). Se usa polarización circular, que es más estable, establecida desde el proyector que está en sincronía con la pantalla LCD que se pone en frente de este, para crear la polarización de la luz. Se necesita de una pantalla especial, plateada, que refleja la luz, ayudando a que exista menos traspaso de imagen de un ojo al otro. Los lentes utilizados son baratos, por lo tanto se pueden dar como regalo después de la función, pero no en todos los países aún, y generalmente son personalizados para cada película. También se ha generado un sistema de reciclaje de lentes para evitar la contaminación del medioambiente. Algunas marcas conocidas de lentes han anunciado que lanzarán lentes de sol, que mediante un sistema especial, se podrán ocupar también como lentes 3D en estos cines.

Sistema Dolby 3D

El sistema crea la ilusión a partir de la emisión de imágenes intercaladas del ojo izquierdo y derecho, a 144 cuadros por segundo, al igual que el RealD, pero usa una pantalla común (Blanca) y crea el 3D mediante diferenciación espectral, que se refiere a la diferencia de colores, como los típicos lentes Rojo-Azul, pero a un nivel imperceptible, de manera que se ve la imagen a todo color. Dentro del proyector va el sistema de disco que produce la diferenciación de color, coordinado con las imágenes proyectadas. Los lentes ocupados se deben devolver después de cada función, donde después se produce una limpieza de estos y su reutilización, a causa de su alto costo, costo que a causa de su mantención se eleva más aún.

Sistema XpanD 3D

Este sistema ocupa un proyector digital a 48 cuadros por segundos, 24 por cada ojo. Usa lentes activos, los cuales se coordinan con el proyector mediante un emisor infrarrojo colocado en la sala. Se usa una pantalla común. Los costos de mantención son mayores, a causa de la limpieza de lentes y baterías que se tienen que reemplazar. Se dice que es el sistema que da la mejor sensación de profundidad. Es más usado en Europa.

Sistema IMAX 3D

Existen 2 tipos: Digital y Análogo. Los IMAX tienen renombre mundial por su alta calidad de imagen, generada por sus sistemas análogicos. Usan 2 rollos de película, una para cada ojo, 10 veces más grandes que las normales, 2 proyectores con diferentes filtros polarizadores sobre ellos. Usan una pantalla Plateada, pues usan polarización lineal. Se le dice el sistema mas inmersivo, a causa del sistema de audio y el tamaño de sus pantallas, pero a causa de la forma que genera el 3D, si giras un poco la cabeza, la imagen de un ojo se comienza a pasar al otro. La versión digital de los IMAX no ha tenido gran aceptación, a causa de su baja calidad de imagen en relación a la versión análoga.

Ventajas del Digital 3D

La ventaja y principal diferencia del sistema Digital 3D frente a los otros sistemas estereoscópicos, está fundamentada en su mayor calidad visual, y en su mejor adaptación a los ojos humanos, ya que con los sistemas anaglíficos, los ojos se cansaban rápidamente.

CINE 3D

El cine 3D es la proyección de películas cinematográficas que puedan ser percibidas con sensación de profundidad gracias a la visión estereoscópica.

Las técnicas empleadas suelen implicar que, en el proceso de filmación, se empleen dos cámaras simultáneamente para obtener imágenes con dos perspectivas diferentes. Así mismo, durante la proyección, los espectadores suelen emplear algún filtro que separa (de distinto modo según la técnica) las imágenes superpuestas para que sean recibidas por cada ojo independientemente. La corteza visual interpreta estas imágenes añadiendo la sensación de profundidad, del mismo modo que normalmente recibe imágenes con distintos puntos de vista de cada ojo.

Gafas 3D

Las gafas 3D son anteojos que permiten simular las tres dimensiones en ciertas imágenes bidimensionales.




Historia

Las primeras gafas que se inventaron fueron las anaglíficas. Estas gafas, generalmente, usaban dos colores, el rojo y el azul, para filtrar las imágenes y poder ver el efecto 3D.

Funcionamiento

Al mirar la pantalla sin estos anteojos, podemos ver dos imágenes desincronizadas, con colores azul y rojo. Al ponernos las gafas, veremos una sola imagen en tres dimensiones.

Actualmente, las técnicas han evolucionado mucho, permitiendo proyecciones en cine Digital 3D, consiguiendo resultados más reales. Hay que tener en cuenta dos cosas: el tipo de proyección y el tipo de gafas 3D que permita ver correctamente la proyección.

Existen diferentes técnicas de visionado de películas en Digital 3D. Principalmente, las gafas pasivas o polarizadas y las gafas activas. La principal diferencia se debe a la proyección. Si en la proyección no se realiza ningún filtrado de las imágenes, se necesitará unas gafas activas que permitan el filtrado de las imágenes para cada ojo. Si, por el contratrio, en la proyección se realiza un filtrado de sus imágenes, se necesitarán unas gafas pasivas polarizadas, que polarizarán cada imagen izquierda o derecha.

Gafas pasivas

Las gafas anaglíficas han evolucionado a un tipo de gafas pasivas, llamadas gafas polarizadas. Las gafas polarizadas usan unas lentes que filtran las ondas de luz, proyectándolas a ciertos ángulos. Este tipo de gafas permiten ver por cada ojo un determinado número de imágenes, consiguiendo una sensación de profundidad o efecto 3D de mayor calidad y mejor visionado.

Gafas activas

Este tipo de gafas requiere un sensor infrarrojo que permita sincronizar las imágenes alternativas de la pantalla con las lentes LCD de las gafas.

Las gafas activas llevan una batería, un sensor infrarrojo, cristales LCD y circuitería, por lo que son bastante más pesadas y más caras. El proyector emite las imágenes sin ningún tipo de filtrado, siendo las gafas a través del sensor las que se obturan y desobturan a la misma frecuencia que la emisión de fotogramas.

PANTALLAS 3D

El principal objetivo de una pantalla 3D es reproducir escenas del mundo real y por lo tanto tridimensionales y poder mostrarlas como imágenes 3D. Hay dos sistemas destacados para visualizar contenidos 3D: estereoscópicos y autoestereoscópicos. Los primeros necesitan unas gafas especiales, mientras que los otros permiten disfrutar de la sensación 3D sin ningún tipo de complementos.

Principios físicos de la visión 3D

El sistema visual humano es un sistema binocular, es decir, disponemos de dos sensores (ojos) que, debido a su separación horizontal, reciben dos imágenes de una misma escena con puntos de vista diferentes. Mediante estas dos vistas el cerebro crea una sensación espacial. A este tipo de visión se le llama visión estereoscópica, en la que intervienen diversos fenómenos. Cuando observamos objetos muy lejanos, los ejes ópticos de los ojos son paralelos. Cuando observamos un objeto cercano, los ojos giran para que los ejes ópticos estén alineados sobre el mismo, es decir, convergen. Asimismo, se produce el acomodo o enfoque para ver nítidamente el objeto. En el conjunto de este proceso se le llama fusión. Un factor que interviene directamente en esta capacidad es la separación interocular. A mayor separación entre los ojos, mayor es la distancia a la que apreciamos el efecto de relieve.

Para visualizar correctamente un contenido 3D sería necesario:

  • Evitar la sensación de mareo
  • El usuario no debe tener que hacer un esfuerzo para adaptarse a la sensación 3D, sino que esta sensación tiene que ser natural
  • La sensación 3D debe ser nítida y constante a lo largo de todas las figuras y especialmente en los contornos de los objetos
  • El sistema debe ser lo más independiente posible del ángulo de visión del usuario.

Evolución

Los pioneros en el estudio de la estereoscopia fueron Euclides y Leonardo da Vinci, que ya en su época observaron y estudiaron el fenómeno de la visión binocular. Pero para encontrar el primer dispositivo hay que remontarse al año 1838, cuando el físico escocés Sir Charles Wheatstone construyó un aparato con el que se podía apreciar el fenómeno de la visión estereoscópica. Ya en los años 50 se intentó la explotación comercial de películas 3D, pero dada la mala calidad de los contenidos no tuvo mucho impacto. Fue en los años 80 cuando se consiguieron resultados más espectaculares, con sistemas de gran formato de película, como el del IMAX, que consiguen imágenes de alta resolución en grandes pantallas. Así pues, la imagen tridimensional en movimiento no es novedad de ahora, y ya en los cines antiguos se proyectaban algunas películas tridimensionales que funcionaban emitiendo dos películas diferentes, cada una con un tinte de diferente color. Al ponernos unas gafas de estos colores (una en cada ojo), cada ojo veía una parte de la película, dejando "invisible" la otra, por lo que se obtenía una visión estereoscópica, dando sensación de profundidad. Con el avance de la tecnología, la técnica se fue perfeccionando, creando sistemas que hacían más o menos lo mismo, pero mejor. Así, existen gafas con polarización vertical en un ojo y horizontal en el otro que obtienen un efecto más real que con la polarización por colores. Sin embargo, estos sistemas no son cómodos ni prácticos, de manera que con la aparición de nuevas técnicas se ha logrado obtener pantallas que transmiten la sensación de profundidad sin necesidad de ningún complemento visual.

Descripción

Una pantalla 3D es capaz de transmitir diferente información en cada ojo, consiguiendo así el efecto estereoscópico que a su vez, consigue el efecto de profundidad de la imagen. Este efecto se puede conseguir de dos maneras, mediante el uso de gafas (sistemas estereoscópicos) y sin ningún tipo de accesorio (sistemas autoestereoscópicos).

Sistemas estereoscópicos

Este tipo de sistemas necesitan el uso de gafas para una correcta visualización. Su funcionamiento se basa en que se emiten dos imágenes diferentes (captadas con una cámara esteroscópica), y cada ojo capta una mediante las gafas, para así tener una sensación de profundidad.

Sistemas autoestereoscópicos

La idea es muy parecida a la de las pantallas que requieren de gafas para ver en tres dimensiones. Se trata de conseguir que la pantalla emita una imagen para el ojo izquierdo y otra por el derecho, y esto se realiza mediante una barrera de paralaje que interrumpe el haz de luz selectivamente para que cada imagen vaya en el ojo que le corresponde.




El problema se presenta cuando los ojos del usuario cambian de posición, es decir, cuando se cambia el ángulo de visión. Para evitar este efecto algunas compañías que están investigando sobre esta tecnología optan por hacer que sólo una posición sea la correcta para poder apreciar el efecto tridimensional, mientras que otros incorporan un detector de posición de los ojos del observador para que el efecto sea válido aunque se mire con un ángulo respecto a la perpendicular de la pantalla. Los displays 3D que se utilizan para realizar la representación de los contenidos 3D pueden ser divididos según la técnica empleada para dirigir las vistas izquierda y derecha en el ojo apropiado: unos necesitan dispositivos ópticos cerca de los ojos, y por el contrario, otros tienen este proceso integrado en el mismo display. Estos últimos, de visión libre (free-viewing o FTV), son los llamados autoestereoscópicos. El hecho de que el usuario no necesite incorporar ningún elemento hace que estos despierten un gran interés.

Problemática

Una pantalla 3D es un sistema multivisión. Los sistemas multivisión son reconocidos generalmente por proporcionar una reproducción superior de la imagen 3D por que la imagen visible cambia con el punto de vista del observador en relación a la pantalla. Con tal de exagerar la sensación de profundidad en imágenes estereoscópicas 3D, es posible aumentar el número de vistas, de modo que la imagen pueda ser observada desde varias posiciones. Sin embargo, el problema radica en que un aumento del número de vistas provoca una pérdida de resolución, dado que el número de píxeles que se pueden colocar en una pantalla de cristal líquido es limitado. Las pantallas convencionales multivisión emplean en general tres lentes lenticulares diseñadas para cubrir un ancho de visión de 62 a 65 mm, una distancia equivalente a la separación media entre ojos de una persona. Sin embargo, estas pantallas 3D aún presentan algunos problemas relacionados con los siguientes aspectos:

  • Zona de visión: Las imágenes en las pantallas 3D comunes diseñadas con un ancho de visión de 62 a 65 mm pueden aparecer incorrectas y resultar incómodas a menos que se vean de frente y desde una determinada distancia, ya que los ojos pueden detectar una imagen 2D en algunas partes de la pantalla. Es por este motivo que actualmente se trabaja en optimizar el ancho de visión para que se reduzca la aparición de imágenes 2D y permita que las imágenes 3D puedan visualizarse con un campo de visión más amplio.
  • Pérdida de resolución: Para resolver el problema de la pérdida de resolución en las pantallas multivisión se puede utilizar una tecnología de procesamiento de imágenes llamada step 3D pixel array (mejora de la formación de píxeles 3D), actualmente ya probada por algunas compañías. Esta técnica tiene en cuenta la sensibilidad del ojo humano a la pérdida de resolución en la dirección horizontal. Al minimizar la degradación de la resolución horizontal del píxel, se mejora la calidad de la imagen para ofrecer a los espectadores imágenes 3D de mayor definición y más vivas.
Se ha visto pues que el efecto tridimensional presenta todavía poca estabilidad (depende de la posición del espectador) y la resolución de la imagen es escasa. La captación directa de la imagen real con este sistema requeriría un dispositivo multicámara, y este es un tema de investigación actual.

Algunas tecnologías

Existen varios tipos de tecnologías, algunas ya disponibles comercialmente:
  • Displays autoestereoscópicos o de paralaje: son pantallas de ordenador similares a las tradicionales, en las que no es necesario el uso de gafas polarizantes o filtros de colores. Algunos sistemas disponen de obturadores selectivos que muestran sólo las columnas de píxeles que corresponden a la imagen de uno de los ojos, obturando las que corresponden al otro, para la posición de la cabeza del usuario. Por ello suelen estar asociados a sistemas de seguimiento de la cabeza por infrarrojos.
  • Displays volumétricos: son sistemas que presentan la información en un determinado volumen. Al igual que una pantalla de TV es capaz de iluminar selectivamente todos y cada uno de los píxeles de su superficie, un display volumétrico es capaz de iluminar todos los píxeles en 3D que componen su volumen. Hay tres tipos principales:
  • Espejo varifocal: Una membrana espejeada oscila convirtiéndose en un espejo de distancia focal variable que refleja la imagen de una pantalla. Sincronizando la imagen que se muestra en la pantalla con la potencia óptica del espejo se puede barrer cualquier punto de un volumen determinado. Un sistema bastante experimental todavía
  • Volumen emisivo: Un determinado volumen ocupado por un medio capaz de emitir luz en cualquier parte de su interior como resultado de una excitación externa, por ejemplo mediante láser de diferentes longitudes de onda. Muy experimental, la gran dificultad es encontrar el material apropiado.
  • Pantalla rotativa: Una pantalla plana gira a una velocidad de alrededor de 600 rpm. Para cada uno de un conjunto predeterminado de posiciones angulares de la misma un sistema espejos proyecta sobre ella la imagen del objeto tal como corresponde a la perspectiva asociada a dicho ángulo. El resultado final es la imagen 3D de un objeto que podemos ver desde 360 grados.

Métodos de distribución espacial para dar sensación 3D

La mayoría de los monitores free-viewing producen un limitado número de vistas (como mínimo dos). En este caso, la única forma de dar una sensación 3D consiste en hacer una distribución espacial de las distintas vistas. Algunos de los métodos más destacados son:

  • Electroholográficos: Estos displays, actualmente en fase de investigación, pueden grabar y reproducir las propiedades de las ondas de luz (amplitud, longitud de onda y fase). Este proceso, en caso de realizarse de forma perfecta, sería el ideal para sistemas de visión libre 3D.
  • Volumétricos: Estos displays crean la sensación de inmersión proyectando la información 3D dentro de un volumen. Estos sistemas típicamente presentan problemas de resolución además de necesitar mucho ancho de banda. Este tipo de displays se actualmente encuentra en fase de investigación.
  • Multiplexado por direccionamiento: Se aplican efectos ópticos como la difracción, refracción, reflexión y oclusión para redirigir la luz emitida por los píxeles de distintas vistas al ojo apropiado. Existen diversos tipos, pero los más destacados (debido a que están más desarrollados tecnológicamente) son los basados en la refracción y en oclusión.
  • Oclusión: Debido al efecto parallax (paralaje), partes de la imagen son ocultadas a un ojo y visibles para el otro. Existen diversos tipos dependiendo del número de hendiduras y de la posición de colocación de la barrera, que puede estar enfrente o detrás de la pantalla. Las pantallas con barrera de parallax detrás del display ya se pueden encontrar en el mercado en monitores tanto de PC como de portátiles. Como se observa en la siguiente figura, la barrera de parallax es la encargada que redirigir los haces de luz (y no la imagen en si), al ojo adecuado. El problema que tiene este tipo de displays es que la posición de visualización es muy estricta siendo posible su uso sólo para una persona.
  • Refracción: Como en el caso anterior existen diversos tipos de display. En este tipo de displays la imagen se compone de múltiples pequeñas imágenes 2D capturas con un amplio número de grupos de pequeñas lentes convexas. Cada grupo de lentes captura la escena desde un punto de vista distinto. De esta manera el usuario percibe diferentes imágenes para diferentes puntos de vista. El problema radica en que los grupos lentes deben de ser muy pequeños, debido a que cada píxel debe contener un grupo de lentes. Por este motivo, el display debe de tener una resolución muy alta. Como solución alternativa existen las pantallas lenticulares que usan lentes cilíndricas. Debido a la orientación vertical de las lentes, los rayos de luz de cada imagen son emitidos en direcciones específicas en el plano horizontal.
Actualidad

En los últimos tiempos las industrias como la cinematográfica y la de videojuegos, han incrementado la demanda de sistemas 3D que proporcionan un nivel de emoción superior al que ofrecen las imágenes bidimensionales. Las pantallas convencionales de 3D no están a la altura de esta demanda, debido a las limitaciones mencionadas en el campo de visión y a la baja resolución que ofrecen. Actualmente ya están siendo introducidos los primeros modelos de pantallas 3D en el mercado. Varios fabricantes (Philips, LG, Sharp, ...) están haciendo grandes avances en el desarrollo de monitores 3D que producen una visión estéreo de forma natural para el usuario y compatibles con 2D. Y es que las pantallas autoestereoscópicas 3D representan un gran reto para el futuro de la visualización de imágenes tridimensionales.




Vehículos Aéreos No Tripulados

Un vehículo aéreo no tripulado, UAV por siglas en inglés (Unmanned Aerial Vehicle), o vehículo aéreo pilotado por control remoto, RPV (Remotely Piloted Vehicle),1 conocido en castellano por sus siglas como VANT, es una aeronave que vuela sin tripulación humana a bordo. Son usados mayoritariamente en aplicaciones militares. Para distinguir los UAV de los misiles, un UAV se define como un vehículo sin tripulación reutilizable, capaz de mantener un nivel de vuelo controlado y sostenido, y propulsado por un motor de explosión o de reacción. Por tanto, los misiles de crucero no son considerados UAVs porque, como la mayoría de los misiles, el propio vehículo es un arma que no se puede reutilizar, a pesar de que también es no tripulado y en algunos casos guiado remotamente.

Existe una amplia variedad de formas, tamaños, configuraciones y características en el diseño de los UAV. Históricamente los UAV eran simplemente aviones pilotados remotamente (en inglés: drones),2 pero cada vez más se está empleando el control autónomo de los UAV. En este sentido se han creado dos variantes: algunos son controlados desde una ubicación remota, y otros vuelan de forma autónoma sobre la base de planes de vuelo preprogramados usando sistemas más complejos de automatización dinámica.



Actualmente, los UAV militares realizan tanto misiones de reconocimiento como de ataque.3 Si bien se ha informado de muchos ataques de drones exitosos, también son propensos a provocar daños colaterales y/o identificar objetivos erróneos, como con otros tipos de arma.2 Los UAV también son utilizados en un pequeño pero creciente número de aplicaciones civiles, como en labores de lucha contra incendios o seguridad civil, como la vigilancia de los oleoductos. Los vehículos aéreos no tripulados suelen ser preferidos para misiones que son demasiado "aburridas, sucias o peligrosas" para los aviones tripulados.


Historia

El ejemplo más antiguo fue desarrollado después de la primera guerra mundial, y se emplearon durante la segunda guerra mundial para entrenar a los operarios de los cañones antiaéreos. Sin embargo, no es hasta poco más que a finales del siglo XX cuando operan los 'UAV mediante radio control con todas las características de autonomía.

Los UAV han demostrado sobradamente en diferentes escenarios y especialmente en la Guerra del Golfo y en la Guerra de Bosnia, el gran potencial que pueden tener. En cuanto a la obtención, manejo y transmisión de la información, gracias a la aplicación de nuevas técnicas de protección de la misma (Guerra electrónica, criptografía) resulta posible conseguir comunicaciones más seguras, más difíciles de detectar e interferir.

Clasificación de los UAV

Los UAV dependiendo su misión principal suelen ser clasificados en 6 tipos:
  • De blanco - sirven para simular aviones o ataques enemigos en los sistemas de defensa de tierra o aire
  • Reconocimiento - enviando información militar. Entre estos destacan los MUAVs (Micro Unmanned Aerial Vehicle)
  • Combate (UCAV) - Combatiendo y llevando a cabo misiones que suelen ser muy peligrosas
  • Logística - Diseñados para llevar carga
  • Investigación y desarrollo - En ellos se prueban e investigan los sistemas en desarrollo
  • Uav comerciales y civiles - Son diseñados para propósitos civiles




También pueden ser categorizados dependiendo de su techo y alcance máximo
  • Handheld: unos 2000 pies de altitud, unos 2 km de alcance
  • Close: unos 5000 pies de altitud, hasta 10 km de alcance
  • NATO: unos 10.000 pies de altitud, hasta 50 km de alcance
  • Tactical: unos 18000 pies de altitud, hasta 160 km de alcance
  • MALE (medium altitude, long endurance) hasta 30000 pies de altitud y un alcance de unos 200 km
  • HALE (high altitude, long endurance) sobre 30.000 pies de techo y alcance indeterminado
  • HYPERSONIC alta velocidad, supersónico (Mach 1-5) o hipersónico (Mach 5+) unos 50000 pies de altitud o altitud suborbital, alcance de 200km
  • ORBITAL en orbitas bajas terrestres (Mach 25+)
  • CIS Lunar viaja entre la Luna y la Tierra
Aplicaciones

Se pueden aplicar en ambientes de alta toxicidad química y radiológicos en desastres tipo Chernóbil, en los que sea necesario tomar muestras con alto peligro de vidas humanas y realizar tareas de control de ambiente. Las aeronaves cumplen con las normas regulatorias establecidas en el Tratado de Cielos Abiertos de 1992 que permiten los vuelos de UAVs sobre todo el espacio aéreo de sus signatarios. Además, pueden cooperar en misiones de control del narcotráfico y contra el terrorismo. También podrían grabar vídeos de alta calidad para ser empleados como medios de prueba en un juicio internacional.

También se aprovecha la ventaja de que su duración máxima volando solo es limitada por su combustible y por su sistema de vuelo , sin tener las limitaciones correspondientes a tener tripulación.



Sistemas Inteligentes y Domótica

Un sistema inteligente es un programa de computación que reúne características y comportamientos asimilables al de la inteligencia humana o animal.

La expresión "sistema inteligente" se usa a veces para sistemas inteligentes incompletos, por ejemplo para una casa inteligente o un sistema experto.

Un sistema inteligente completo incluye "sentidos" que le permiten recibir información de su entorno. Puede actuar, y tiene una memoria para archivar el resultado de sus acciones. Tiene un objetivo e, inspeccionando su memoria, puede aprender de su experiencia. Aprende cómo lograr mejorar su rendimiento y eficiencia.


Capacidades requeridas

Para que un sistema inteligente pueda ser considerado completo, debe incluír diversas funcionalidades que incluyan
  • Inteligencia: Hay muchas definiciones de "inteligencia". Para usos prácticos usamos esta: La inteligencia es el nivel del sistema en lograr sus objetivos.
  • Sistematización: Un sistema es parte del universo, con una extensión limitada en espacio y tiempo. Las partes del sistema tienen más, o más fuertes, correlaciones con otras partes del mismo sistema; que con partes fuera del sistema.
  • Objetivo: Un objetivo es una cierta situación que el sistema inteligente quiere lograr. Normalmente hay muchos niveles de objetivos, puede haber un objetivo principal y muchos subobjetivos.
  • Capacidad sensorial: Un sentido es la parte del sistema que puede recibir comunicaciones del entorno. Se necesitan los sentidos para que el sistema inteligente puede conocer su entorno y actuar interactivamente.
  • Conceptualización: Un concepto es el elemento básico del pensamiento. Es el almacenamiento físico, material de información (en neuronas o electrones). Todos los conceptos de la memoria están interrelacionados en red. La capacidad de conceptualizar implica el desarrollo de niveles de abstracción.
  • Situación: La situación se integra con una serie de conceptos que el sistema inteligente usa para representar la información que sus sentidos recibieron del entorno.
  • Reglas de actuación: Una regla de actuación es el resultado de una experiencia o el resultado de intepretar la propia memoria. Relaciona situación y consecuencias de la acción.
  • Memoria: La memoria es un almacenaje físico de conceptos y reglas de actuación. Esto incluye la experiencia del sistema.
  • Aprendizaje: El aprendizaje es probablemente la capacidad más importante de un sistema inteligente. El sistema aprende conceptos a partir de la información recibida de los sentidos. Aprende reglas de actuación a base de su experiencia. La actuación, a veces hecha al azar, se almacena con su valor. Una regla de actuación aumenta en valor si permitió el logro de un objetivo. El aprendizaje incluye la fijación de conceptos abstractos, a base de ejemplos concretos y la creación de conceptos compuestos que contienen los conceptos de partes de un objeto. El aprendizaje también es la capacidad de detectar relaciones (patrones) entre la parte "situación" y la parte "situación futura" de una regla de actuación.
DOMÓTICA

El término Domótica proviene de la unión de las palabras domus (que significa casa en latín) y tica (de automática, palabra en griego, 'que funciona por sí sola'). Se entiende por domótica al conjunto de sistemas capaces de automatizar una vivienda, aportando servicios de gestión energética, seguridad, bienestar y comunicación, y que pueden estar integrados por medio de redes interiores y exteriores de comunicación, cableadas o inalámbricas, y cuyo control goza de cierta ubicuidad, desde dentro y fuera del hogar. Se podría definir como la integración de la tecnología en el diseño inteligente de un recinto cerrado.


Características generales

Las Aplicaciones

Los servicios que ofrece la domótica se pueden agrupar según cinco aspectos o ámbitos principales:

1. Ahorro energético: El ahorro energético no es algo tangible, sino un concepto al que se puede llegar de muchas maneras. En muchos casos no es necesario sustituir los aparatos o sistemas del hogar por otros que consuman menos sino una gestión eficiente de los mismos.

  • Climatización: programación y zonificación.
  • Gestión eléctrica:
  • Racionalización de cargas eléctricas: desconexión de equipos de uso no prioritario en función del consumo eléctrico en un momento dado.
  • Gestión de tarifas, derivando el funcionamiento de algunos aparatos a horas de tarifa reducida
  • Uso de energías renovables
2. Confort: Conlleva todas las actuaciones que se puedan llevar a cabo que mejoren el confort en una vivienda. Dichas actuaciones pueden ser de carácter tanto pasivo, como activo o mixtas.

  • Iluminación:
Apagado general de todas las luces de la vivienda
Automatización del apagado/ encendido en cada punto de luz.
Regulación de la iluminación según el nivel de luminosidad ambiente
  • Automatización de todos los distintos sistemas/ instalaciones / equipos dotándolos de control eficiente y de fácil manejo
  • Integración del portero al teléfono, o del videoportero al televisor
  • Control vía Internet
  • Gestión Multimedia y del ocio electrónicos
  • Generación de macros y programas de forma sencilla para el usuario

3. Seguridad: Consiste en una red de seguridad encargada de proteger tanto los Bienes Patrimoniales y la seguridad personal.

  • Alarmas de intrusión (Antiintrusión): Se utilizan para detectar o prevenir la presencia de personas extrañas en una vivienda o edificio.
  • Detección de un posible intruso (Detectores volumetricos o perimetrales)
  • Cierre de persianas puntual y seguro
  • Simulación de presencia
  • Alarmas de detección de incendios, fugas de gas, escapes de agua, concentración de monóxido en garajes cuando se usan vehículos de combustión.
  • Alerta médica. Teleasistencia.
  • Acceso a Cámaras IP.

4. Comunicaciones: Son los sistemas o infraestructuras de comunicaciones que posee el hogar.
  • Ubicuidad en el control tanto externo como interno, control remoto desde Internet, PC, mandos inalámbricos (p.ej. PDA con WiFi), aparellaje eléctrico.
  • Tele asistencia
  • Tele mantenimiento
  • Informes de consumo y costes
  • Transmisión de alarmas.
  • Intercomunicaciones.

5. Accesibilidad: Bajo este epigrafe se incluyen las aplicaciones o instalaciones de control remoto del entorno que favorecen la autonomía personal de personas con limitaciones funcionales, o discapacidad. El concepto "diseño" para todos es un movimiento que pretende crear la sensibilidad necesaria para que al diseñar un producto o servicio se tengan en cuenta las necesidades de todos los posibles usuarios, incluyendo las personas con diferentes capacidades o discapacidades, es decir, favorecer un diseño accesible para la diversidad humana. La inclusión social y la igualdad son términos o conceptos más generalistas y filosóficos. La domótica aplicada a favorecer la accesibilidad es un reto ético y creativo pero sobre todo es la aplicación de la tecnología en el campo más necesario, para suplir limitaciones funcionales de las personas. El objetivo no es que las personas con discapacidad puedan acceder a estas tecnologías, porque las tenologías en si no son un objetivo, sino un medio. El objetivo de estas tecnologías es favorecer la autonomía personal. Los destinatarios de estas tecnologías son todas las personas, ya que por enfermedad o envejecimiento, todos somos o seremos discapacitados, más pronto o más tarde.


El sistema

Descripción
Controladores
Sensores
Actuadores


Arquitectura

Desde el punto de vista de donde reside la inteligencia del sistema domótico, hay varias arquitecturas diferentes:

  • Arquitectura Centralizada: un controlador centralizado recibe información de múltiples sensores y, una vez procesada, genera las órdenes oportunas para los actuadores.
  • Arquitectura Distribuida: toda la inteligencia del sistema está distribuida por todos los módulos sean sensores o actuadores. Suele ser típico de los sistemas de cableado en bus, o redes inalámbricas.
  • Arquitectura mixta: sistemas con arquitectura descentralizada en cuanto a que disponen de varios pequeños dispositivos capaces de adquirir y procesar la información de múltiples sensores y transmitirlos al resto de dispositivos distribuidos por la vivienda, p.ej. aquellos sistemas basados en Zigbee y totalmente inalámbricos.

Elementos de una instalación domótica

  • Central de gestión
  • Sensores
  • Actuadores
  • Soportes de comunicación
  • Aparatos terminales

Medios de interconexión

Cableados:
  • ADSL
  • Fibra óptica
  • Power Line Communications y X10
  • Cable (coaxial y par trenzado)
Inalámbricos:
  • Wifi
  • GPRS
  • Bluetooth
  • Radiofrecuencia
  • Infrarrojos
  • ZigBee
Clasificación de tecnologías de redes domésticas

Interconexión de dispositivos:
  • IEEE 1394 (FireWire)
  • Bluetooth
  • USB
  • IrDA

Redes de control y automatización:
  • KNX
  • X10
  • EIB
  • EHS
  • Batibus
  • ZigBee
  • Redes de datos:
  • Ethernet
  • Homeplug
  • HomePNA
  • Wifi
Estándares

  • X10: Protocolo de comunicaciones para el control remoto de dispositivos eléctricos, hace uso de los enchufes eléctricos, sin necesidad de nuevo cableado. Puede funcionar correctamente para la mayoría de los usuarios domésticos. Es de código abierto y el más difundido. Poco fiable frente a ruidos eléctricos.
  • KNX/EIB: Bus de Instalación Europeo con más de 20 años y más de 100 fabricantes de productos compatibles entre sí.
  • ZigBee: Protocolo estándar, recogido en el IEEE 802.15.4, de comunicaciones inalámbrico.
  • OSGi: Open Services Gateway Initiative. Especificaciones abiertas de software que permita diseñar plataformas compatibles que puedan proporcionar múltiples servicios. Ha sido pensada para su compatibilidad con Jini o UPnP.
  • LonWorks: Plataforma estandarizada para el control de edificios, viviendas, industria y transporte.
  • Universal Plug and Play (UPnP): Arquitectura software abierta y distribuida que permite el intercambio de información y datos a los dispositivos conectados a una red.
Asociaciones

  • IEEE: The Institute of Electrical and Electronics Engineers, el Instituto de Ingenieros Eléctricos y Electrónicos, una asociación técnico-profesional mundial dedicada a la estandarización, entre otras cosas. Es la mayor asociación internacional sin fines de lucro formada por profesionales de las nuevas tecnologías, como ingenieros eléctricos, ingenieros en electrónica, científicos de la computación e ingenieros en telecomunicación....
  • A través de sus miembros, más de 360.000 voluntarios en 175 países, el IEEE es una autoridad líder y de máximo prestigio en las áreas técnicas derivadas de la eléctrica original: desde ingeniería computacional, tecnologías biomédica y aeroespacial, hasta las áreas de energía eléctrica, control, telecomunicaciones y electrónica de consumo, entre otras.
  • CENELEC: Comité Europeo de Normalización Electrotécnica. La Comisión CENELEC/ENTR/e-Europe/2001-03 es la encargada de elaborar normas a nivel europeo y la organización que ha promocionado el Smart House Forum.
  • [CEDOM]: Asociación Española de Domótica. Su objetivo principal es la promoción de la Domótica. Se trata del foro nacional en el que se reúnen todos los agentes del sector en España: fabricantes de productos domóticos, fabricantes de sistemas, instaladores, integradores, arquitecturas e ingenierías, centros de formación, universidades, centros tecnológicos.
  • LonUsers España:Asociación de usuarios de la tecnología LonWorks, siendo creada por la iniciativa de empresas líderes en los diferentes sectores de aplicación de la tecnología LonWorks (domótica, inmótica, control industrial y de transporte).
  • KNX Association:Es la Asociación internacional para la promoción del protocolo de bus KNX. KNX es una tecnología de bus normalizada para todas las aplicaciones en la Automatización y Control para viviendas y edificios. Esta tecnología está basada en más de 20 años de experiencia en el mercado gracias a sus predecesores BatiBus, EIB y EHS, ninguno de los cuales ha conseguido penetración en el mercado.
  • KNX España: Es la Asociación nacional para la promoción del protocolo de bus KNX. Actualmente forma parte de ella un amplio abanico de empresas de diversa índole como fabricantes, distribuidores, integradores, ingenierías, constructores, centros de formación, otras Asociaciones empresariales, etc
  • KNX Professionals España :Asociación de profesionales de la tecnología KNX, siendo creada por la iniciativa de empresas líderes en proyectos KNX y el respaldo de KNX Associtation. Hasta enero de 2011 denominada KNX User Club.
Comunidades

OpenDomo.org: Comunidad de usuarios para le creación de un sistema libre de domótica basado en Linux..

Por países

  • Chile
En Chile existen pocas empresas que realicen trabajos de domótica, habiendo sólo una que se dedica al tema en forma exclusiva y completa. Dentro de los proyectos destacables de domótica en Chile podemos mencionar la automatización de las estaciones de las Líneas 4 y 4A del Metro de Santiago y varios edificios de oficinas.
  • España
En España la domótica tiene presencia mediante multitud de empresas, algunas con más de 10 años en el mercado.
  • Argentina
En Argentina la domótica surge de la mano de empresas de tecnología que incorporan el concepto y lo desarrollan. A comienzo de la década de 1990, estas empresas comienzan a hablar de domótica al referirse a la casa del futuro, y a realizar algunas aplicaciones de carácter parcial, participando en ferias y notas periodísticas que colaboran con la difusión del nuevo concepto. Conforme avanzan los años 90, las instalaciones se hacen más frecuentes e importantes comenzando a expandirse el mercado argentino, lo cual posibilita, llegado el fin del milenio, la aparición de otras compañías que comienzan a incorporarlo entre sus servicios o realizan desarrollos propios. La crisis económica Argentina de fines del 2001 paraliza este desarrollo que recién se recupera con la expansión que se da en el área de la construcción casi tres años después. En el año 2007 se realiza la primera expo exclusiva de domótica "expo casa domótica" y primer congreso de domótica. Hasta la fecha no existe en Argentina una asociación que establezca estándares o nuclee profesionales del rubro, por lo que alguna de las empresas referentes participan de asociaciones extranjeras.




IPTV y Camaras IP

Internet Protocol Television (IPTV) se ha convertido en la denominación más común para los sistemas de distribución por subscripción de señales de televisión o vídeo usando conexiones de banda ancha sobre el protocolo IP. A menudo se suministra junto con el servicio de conexión a Internet, proporcionado por un operador de banda ancha sobre la misma infraestructura pero con un ancho de banda reservado.



IPTV no es un protocolo en sí mismo. El IPTV o Televisión sobre el protocolo IP, ha sido desarrollado basándose en el video-streaming. Esta tecnología evolucionará en un futuro próximo la televisión actual, aunque para ello son necesarias unas redes mucho más rápidas que las actuales, para poder garantizar la calidad en el servicio.

A diferencia de la situación actual, el proveedor no emitirá sus contenidos esperando que el espectador se conecte, sino que los contenidos llegarán solo cuando el cliente los solicite. La clave está en la personalización del contenido para cada cliente de manera individual. Esto permite el desarrollo del pago por visión o pago por evento o el video bajo demanda. El usuario dispondrá de un aparato receptor conectado a su ordenador o a su televisión y a través de una guía podrá seleccionar los contenidos que desea ver o descargar para almacenar en el receptor y de esta manera poder visualizarlos tantas veces como desee.

La programación que las empresas ofrecerán está basada tanto en los canales tradicionales, como en canales más específicos sobre un determinado tema, para que el cliente seleccione los de su gusto. Además se emitirán eventos deportivos o películas de estreno bajo pago por visión, es decir abonando una cantidad adicional a la tarifa del servicio para poder verlas. Se trata de comprar los contenidos que se deseen ver para confeccionar una televisión a la carta. La IPTV gracias a sus características permitirá almacenar los contenidos para verlos las veces que se desee, pero además permitirá realizar pausas, avanzar, retroceder… etc. como si de una cinta de video o DVD se tratase.

En el sector publicitario, al tratarse de información que llega a través de internet, podrían personalizar sus anuncios, para que el usuario con tan solo hacer un clic pueda acceder a la compra de sus productos...

Adicionalmente se espera dentro de los servicios, métodos de búsqueda y restricciones, es decir que los padres pueden bloquear cierto contenido en IPTV que solo puede ser mostrado previa verificación de una clave parental, así mismo puede buscar por ejemplo todos los programas, series o películas en que actúe tal o cual autor o que sean de tal o cual género.

Requisitos

Para que la IPTV pueda desarrollarse de una manera completa es necesario aumentar la velocidad de las conexiones actuales. Podemos diferenciar dos tipos de canal: de definición estándar SDTV o de alta definición HDTV. Para un canal del primer tipo sería necesario tener una conexión de 1.5 Mbps y para un canal del segundo tipo 8 Mbps. Si tenemos varios canales distintos en forma simultánea (por tener varios receptores de televisión por ejemplo) necesitaremos más ancho de banda. A este ancho de banda hay que sumar el necesario para la conexión a internet. Estamos hablando de 4.5 Mbps para tres canales de SDTV u 11 Mbps para un canal HDTV y dos SDTV. Estos cálculos son usando MPEG-4 para la compresión/codificación del vídeo.

La IPTV necesita unos valores técnicos para poder prestar su contenido sin inconvenientes, los valores son los siguientes:

  • Ancho de banda: dependiendo del número de decodificadores, la velocidad del internet o telefonía IP (VoIP, deberá ser mayor en cada caso, los más comunes son: 4 Mbps, 7 Mbps, 8 Mbps, 10 Mbps, 12 Mbps, 14 Mbps, 16 Mbps y 18 Mbps. El hecho de que el ancho de banda sea más alto, provoca que la línea ADSL sea más sensible a caídas. Es decir, una línea con un perfil de 4 Mbps, si por ejemplo queda con valores de señal-ruido de 13dB y atenuación de 40, no soporta un perfil de 10 Mbps, ya que provoca mayor atenuación y menos señal-ruido.
  • Señal-ruido: mayor de 13dB para garantizar la estabilidad del servicio (cuanto más alto el valor, de más calidad será el servicio)
  • Atenuación: menor de 40dB, ya que si es demasiado alta, el servicio puede tener caídas constantes.

Funcionamiento

Partes de la que consta

Existen una serie de áreas interrelacionadas para poder ofrecer IPTV. Estas son:

  • Adquisición de la señal de video
  • Almacenamiento y servidores de video
  • Distribución de contenido
  • Equipo de acceso y suscriptor
  • Software
Adquisición del contenido

El contenido se puede obtener a través de internet de algún proveedor de contenidos o de un distribuidor de señales de televisión. Se utilizan unos dispositivos llamados codificadores para digitalizar y comprimir el video analógico obtenido. Este dispositivo llamado códec, habilita la compresión de video digital habitualmente sin pérdidas. La elección del codec tiene mucha importancia, porque determina la calidad del video final, la tasa de bits que se enviarán, la robustez ante las pérdidas de datos y errores, el retraso por transmisión… etc.

Formatos de video empleados

Los formatos empleados por IPTV más usualmente son:
  • H.261: Se utilizó para videoconferencia y video telefonía y sirve como base para otros.
  • MPEG-1: Logra calidad similar a VHS y además es compatible con todos los ordenadores y casi todos los DVD.
  • MPEG-2: Es el usado en los DVD y permite imagen a pantalla completa con buena calidad.
  • H.263: Permite bajas tasas con una calidad aceptable. Usado en especial para videoconferencia y videotelefonía.
  • MPEG-4 parte 2: Calidad mejorada respecto a MPEG-2
  • MPEG-4 parte 10: También llamado H264. Es el más usado actualmente por una gran variedad de aplicaciones.
  • WMV: Se utiliza tanto para video de poca calidad a través de internet con conexiones lentas, como para video de alta definición. Mientras que MPEG-4 está respaldado por JVT* el formato WMV es un formato de compresión de video propietario de Microsoft.
  • (JVT) Joint Video Team es la unión de ITU-T Video Coding Experts Group (VCEG) y de ISO/IEC Moving Picture Experts Group (MPEG).
Servidores

Los servidores realizan varias acciones como son:
  • Almacenamiento y respaldo de los contenidos
  • Gestión del video bajo demanda
  • Streaming de alta velocidad
Se trata de servidores IP basados en los sistemas operativos que permiten enviar distintos flujos de video a la vez. La red de transporte ha de ser de alta capacidad para permitir el flujo bidireccional de datos, controlar los datos de sesiones, la facturación de los clientes…etc. Lo más importante es la alta capacidad de transferencia para poder ofrecer buena calidad a los clientes. En la red del proveedor del servicio se usan estándares como Gigabit Ethernet. La red de acceso es el punto donde termina la red del proveedor y comienza el equipo del usuario. En esta interfaz hay un dispositivo encargado de decodificar la información para poder verla en un televisor convencional. El software se encarga de proporcionar al usuario los servicios a través de un sistema de menús en la pantalla de su televisor. Permite la interacción entre el cliente y el sistema.

Web TV

Relacionado en cierta forma con la IPTV, puede hablarse de la web-TV o "televisiones IP". La diferencia esencial es que las segundas son accesibles directamente por internet, mientras que los servicios IPTV de las operadoras de telecomunicaciones son sistemas "cerrados" fuera de la red convencional, lo que les permite dar mejor servicio y crear un sistema de monetización equivalente a la televisión por cable. La tecnología es esencialmente la misma, pero su gestión es diferente. Debe diferenciarse entre plataformas de gestión para este tipo de oferta, como por ejemplo Digital Novae Media, Narrowstep, biib.tv, WebTV Producciones y las ofertas de contenidos (canales) que se ofrecen. Asimismo, debe diferenciarse entre agregadores de contenido y canales en sí mismo. Los agregadores son sitios de internet que integran oferta de multitud de productores de procedencia diversa y cuyo posicionamiento comercial es la acumulación de toda clase de contenidos, incluyendo el generado por el usuario. Los "canales" ofrecen una línea de contenido original propia, generalmente especializada en torno a una temática.

En este momento, una tendencia latente es la integración del acceso a la red (internet) directamente al televisor, sea por su inclusión por parte de un fabricante de televisores, como por la conexión de set-top-boxes (STB) que conectados a internet envíen las imágenes al televisor. Con la generalización de estos dispositivos en los hogares, tendríamos que tanto los servicios desarrollados por las plataformas de gestión como los propios canales desarrollados en la red serían directamente accesibles desde el hogar, pudiendo competir potencialmente con cualquier otro contenido audiovisual. Precisamente, son los proveedores de servicios de IPTV los que están introduciendo esta clase de dispositivos en los hogares, si bien con capacidades para navegar por la red limitadas por cuestiones técnicas. En el momento en que sea posible acceder a cualquier contenido desde el televisor, las barreras y diferencias conceptuales entre IPTV y Web-Tv o televisión IP irán desapareciendo.

Tendencias futuras

A medida que pase el tiempo, las compañías irán perfeccionando y mejorando los contenidos que ofrecen de televisión sobre IP. Podrán ofrecer un mayor número de canales, puesto que el límite lo pone la capacidad de los servidores y el ancho de banda requerido para la demanda. Se estima que en 2009 la televisión sobre IP represente un 10% del total de televisión de pago en Europa. A corto plazo a medida que se vaya difundiendo, cambiará nuestra manera de ver la televisión. Podremos ver a la hora que queramos la película o programa que deseemos y veremos solo lo que decidamos ver. Será una televisión ”a la carta” confeccionada completamente al gusto de cada espectador.

Normalización

En marzo de 2007 se creó el Open IPTV Forum, con el objeto de desarrollar unas especificaciones normalizadas que permitan la utilización "plug and play" de dispositivos de cualquier fabricante para la prestación de servicios finales por parte de cualquier proveedor.

El foro fue constituido por 19 miembros, todos ellos fabricantes de equipos, operadores de telecomunicaciones y proveedores de servicios: Alcatel Lucent, Amino Communications, Deutsche Telekom, Ericsson, France Telecom, Huawei, LG Electronics, Nokia Siemens Networks, Panasonic, Philips, Samsung, Sony, Sun Microsystems, Telecom Italia Group, Telefónica, TeliaSonera, Tilgin, Verimatrix Inc y ZTE Corporation. A Octubre del 2008 se habían incorporado otras empresas más allá de fabricantes de equipos.

Las especificaciones desarrolladas serán dirigidas a los organismos internacionales de estandarización, con el fin de modificar los estándares actuales implicados o incorporar nuevos cuando resulte necesario.

CÁMARAS IP

Una cámara IP (en inglés "IP cameras") es una cámara que emite las imágenes directamente a la red (Intranet o internet) sin necesidad de un ordenador.


Características

Una cámara de red incorpora su propio miniordenador, lo que le permite emitir vídeo por sí misma.Además de comprimir el vídeo y enviarlo, puede tener una gran variedad de funciones:
  • Envío de correos electrónicos con imágenes.
  • Activación mediante movimiento de la imagen.
  • Activación mediante movimiento de sólo una parte de la imagen.
  • Creación una máscara en la imagen, para ocultar parte de ella o colocar un logo. O simplemente por adornar.
  • Activación a través de otros sensores.
  • Control remoto para mover la cámara y apuntar a una zona.
  • Programación de una secuencia de movimientos en la propia cámara.
  • Posibilidad de guardar y emitir los momentos anteriores a un evento.
  • Utilización de diferente cantidad de fotogramas según la importancia de la secuencia. Para conservar ancho de banda.
  • Actualización de las funciones por software.





Las cámaras IP permiten ver en tiempo real qué está pasando en un lugar, aunque esté a miles de kilómetros de distancia. Son cámaras de vídeo de gran calidad que tienen incluido un ordenador a través del que se conectan directamente a Internet.
Una cámara IP (o una cámara de red) es un dispositivo que contiene:
  • Una cámara de vídeo de gran calidad, que capta las imágenes
  • Un chip de compresión que prepara las imágenes para ser transmitidas por Internet, y
  • Un ordenador que se conecta por sí mismo a Internet

Visión en vivo

Con las cámaras IP se puede ver qué está pasando en este preciso momento. La cámara se conecta a través de Internet a una dirección IP que tienen sus cámaras IP.
Las cámaras IP permiten al usuario tener la cámara en una localización y ver el vídeo en vivo desde otro lugar a través de Internet.

El acceso a estas imágenes está totalmente restringido: sólo las personas autorizadas pueden verlas. También se puede ofrecer acceso libre y abierto si el vídeo en directo se desea incorporar al web site de una compañía para que todos los internautas tengan acceso.

Microordenador

Una cámara IP tiene incorporado un ordenador, pequeño y especializado en ejecutar aplicaciones de red. Por lo tanto, la cámara ip no necesita estar conectada a un PC para funcionar. Esta es una de sus diferencias con las denominadas cámaras web.

Una cámara ip tiene su propia dirección IP y se conecta a la red como cualquier otro dispositivo; incorpora el software necesario de servidor de web, servidor o cliente FTP, de correo electrónico... y tiene la capacidad de ejecutar pequeños programas personalizados (denominados scripts).

También incluye entradas para alarmas y salida de relé.

Las cámaras de red más avanzadas pueden equiparse con muchas otras funciones de valor añadido como son la detección de movimiento y la salida de vídeo analógico.

Comparación con camaras de video

Las cámaras IP incorporan todas las funciones de una cámara de vídeo y añaden más prestaciones.

La lente de la cámara enfoca la imagen en el sensor de imagen (CCD). Antes de llegar al sensor, la imagen pasa por el filtro óptico que elimina cualquier luz infrarroja y muestra los colores correctos.

Actualmente están apareciendo cámaras día/noche que disponen de un filtro de infrarrojos automático, este filtro se coloca delante del ccd sólo cuando las condiciones de luz son adecuadas proporcionándonos de esta manera imágenes en color, cuando las condiciones de luz bajan este filtro se desplaza y la cámara emite la señal en blanco y negro produciendo más luminosidad y de esta manera podemos iluminar la escena con luz infrarroja y ver en total oscuridad.

El sensor de imagen convierte la imagen, que está compuesta por información lumínica, en señales eléctricas. Estas señales eléctricas se encuentran ya en un formato que puede ser comprimido y transferido a través de redes.

Como las cámaras de vídeo convencionales, las cámaras IP gestionan la exposición (el nivel de luz de la imagen), el equilibrio de blancos (el ajuste de los niveles de color), la nitidez de la imagen y otros aspectos de la calidad de la imagen. Estas funciones las lleva a cabo el controlador de cámara y el chip de compresión de vídeo.

Las cámaras IP comprimen la imagen digital en una imagen que contiene menos datos para permitir una transferencia más eficiente a través de la Red, cámaras MPEG4.

TV Digital

La televisión digital (o DTV, de sus siglas en inglés: Digital TV) se refiere al conjunto de tecnologías de transmisión y recepción de imagen y sonido, a través de señales digitales. En contraste con la televisión tradicional, que codifica los datos de manera analógica, la televisión digital codifica sus señales de forma binaria, habilitando así la posibilidad de crear vías de retorno entre consumidor y productor de contenidos, abriendo la posibilidad de crear aplicaciones interactivas, y la capacidad de transmitir varias señales en un mismo canal asignado, gracias a la diversidad de formatos existentes.

Un sistema integro de televisión digital, incorpora los siguientes actores:
  • Cámaras de video digitales, que trabajan a resoluciónes similares y mas altas a las analogas.
  • Transmisión digital
  • Display digital, de alta resolución (Ej: LCDs, Plasmas)

Plataformas de Televisión Digital

Televisión Digital Terrestre
Sistemas de televisión digital terreste.
Televisión Digital Terrestre (TDT) es la aplicación de las tecnologías del medio digital a la transmisión de contenidos a través de una antena aérea convencional. Aplicando la tecnología digital se consiguen mayores posibilidades, como proveer un mayor número de canales, mejor calidad de imagen o imagen en alta definición y mejor calidad de sonido. La plataforma usada en los Estados Unidos, Canadá y países de América Latina (Honduras, El Salvador y México) es ATSC; ISDB-T en Japón y Filipinas; ISDB-Tb (variante del ISDB-T) en Brasil y la mayoría de los países latinoamericanos (Perú, Argentina, Uruguay, Chile, Venezuela, Ecuador, Costa Rica, Paraguay, Bolivia, Nicaragua y Guatemala), con la excepción de Colombia, Panamá, Guyana, Suriname, Honduras, El Salvador y México; DTMB en la República Popular China, Hong Kong y Macau; DVB-T en los países europeos, Australia, partes de África y países de América Latina (Colombia y Panamá). El resto del mundo aún no se ha decidido.

La TDT permite una mejora en la calidad de la recepción y amplía la oferta disponible tanto en número de canales como en versatilidad del sistema: emisión con sonido multicanal, múltiples señales de audio, teletexto, EPG (guía electrónica de programas), canales de radio, servicios interactivos, imagen panorámica, etc. A mediano plazo el sistema de televisión analógico desaparecerá completamente liberando frecuencias que permitirán aumentar la oferta de canales, su calidad y otros servicios en TDT.

Adopción en América Latina y el Caribe

Televisión Digital Terrestre en América Latina y el Caribe

El gobierno de México optó por implementar la norma estadounidense ATSC. Hasta el 30 de junio de 2009, tenía 59 canales de televisión digital operando en el esquema de canales replicados, en el cual todo canal de TDT debe tener un correspondiente canal analógico. Según la Comisión Federal de Telecomunicaciones, todas las estaciones deberán transmitir solamente en formato digital para el año 2015.

En América Central, Honduras es el primer país en adoptar el estándar ATSC, bajo el cual existen actualmente varios canales al aire, estos son: (CampusTv - auspiciado por la Universidad de San Pedro Sula) transmite en televisión digital abierta desde el 6 de noviembre de 2008 y simultáneamente en HDTV - Alta Definición 1920 x 1080 (1080i), SDTV - Definición Estándar (480i) y Satélite (480i). TEN Canal 10 (Televisión Educativa Nacional) fue el primer canal en transmitir bajo el formato digital ATSC, desde 2007 transmite en la frecuencia 10.1 en San Pedro Sula y 20.1 en Tegucigalpa con una definición de 480i. La UTV (Canal Oficial de la Universidad Nacional Autónoma de Honduras - UNAH) transmite en un formato estándar (480i) en la frecuencia 4.1 en Tegucigalpa y 67.1 en San Pedro Sula. Televicentro (Honduras) transmitió en alta definición 56 de los 64 partidos de la Copa Mundial de Fútbol de 2010, y a partir del 6 de diciembre del 2010 comenzó a transmitir todos sus noticieros en alta definición (1080i). Sotel "Canal 11" transmite en la actualidad programas en alta definición, destacándose el programa de deportes "Todo Deportes".

En El Salvador optó por implementar la norma estadounidense ATSC. Pero recién el gobierno salvadoreño decidió hacer pruebas con el estandár japonés-brasileño, el ISDB-Tb, el primer canal en hacer esta prueba fue canal 21 de Megavision, en la frecuencia 63.1 a 480i, en la capital del país. Luego en julio 2010 se definió que se adoptará el estándar estadounidense ATSC, en el cual todas las estaciones deben ser digitales desde el día 1 de enero de 2019.

En Panamá después de un estudio que consideró los estándares existentes, una comisión técnica que involucró a una representación de los operadores de televisión, a la Universidad Nacional y Técnológica, entre otras instituciones, adoptó el estándar DVB-T. El anuncio fue realizado mediante el Decreto Ejecutivo No. 96 del 12 de mayo de 2009 que acogió la recomendación de la comisión técnica que elaboró el estudio de televisión digital.

En Costa Rica desde el 17 de diciembre de 2009 un subcomisión técnica ha estado al cargo de llevar a cabo pruebas de campo de los estándares estadounidense, europeo y japonés-brasileño, ATSC, DVB-T e ISDB-TB optando finalmente por este último en un informe que remitió al Ministro de Ambiente, Energía y Telecomunicaciones costaricense, Jorge Rodríguez. El 26 de abril de 2010 una Comisión Mixta Especial formada por representantes de Infocom, el Ministerio de Ambiente, Energía y Telecomunicaciones (Minaet), Universidad Veritas, Universidad Estatal a Distancia (UNED), Universidad de Costa Rica (UCR), Superintendencia de Telecomunicaciones (Sutel) y la Cámara Costarricense de Tecnología de Información y Comunicación (Camtic) daba el visto bueno al estándar japonés-brasileño. Finalmente el presidente de la República de Costa Rica, Óscar Arias Sánchez, firmó el decreto da luz verde a la adopción oficial del ISDB-TB como norma para la televisión digital terretre. Tras su publicación en el 6 de mayo de 2010 en el boletín oficial La Gaceta, Costa Rica viene a sumarse en el apoyo al ISDB-TB a otros países en América Latina como Brasil, Perú, Argentina, Chile, Venezuela y Ecuador.

En Belice se evalúa el estándar japonés-brasileño ISDB-Tb también conocido como SBTVD.

En Nicaragua se evalúa el estándar japonés-brasileño ISDB-Tb también conocido como SBTVD. Nicaragua ya anunció que cualquiera sea el sistema elegido, éste operará con el sistema de compresión H.264/MPEG-4 AVC.

En Guatemala está en estudio el sistema a implementar. Será creo una comisión encargada de estudiar tres normas (ATSC, ISDB y DVB).

En Cuba se evalúa el estándar japonés-brasileño ISDB-Tb. Cuba anunció que cualquiera sea el sistema elegido, éste operará con el sistema de compresión H.264/MPEG-4 AVC.

En la República Dominicana se anunció el estándar estadounidense ATSC.

En Brasil, luego de que el gobierno realizara un convenio comercial con Japón, decidió implementar el estándar ISDB con algunas modificaciones tecnológicas brasileñas. La norma resultante ha sido denominada ISDB-Tb.

Perú ha sido el segundo país sudamericano en elegir dicha norma, a raíz de un estudio técnico y económico realizado por una Comisión Multisectorial desde febrero de 2007. El 23 de abril de 2009, el Ministerio de Transportes y Comunicaciones peruano hizo pública su decisión y ya lanzaron su señal digital en marzo del 2010 siendo TV Perú (canal 7) el primer medio televisivo en incorporar la tecnología digital a su plataforma de emisión al cual se le asignó la frecuencia 16 en banda UHF, que es la banda que mejor se comporta para emisiones de TV digital, actualmente TV Perú, canal de gestión estatal, utiliza esta tecnología para producir y emitir contenidos en definición standar (SD) y en alta definición (HD) haciendo uso de la posibilidad del multicanal , TV Perú sigue haciendo uso de su frecuencia habitual de VHF (canal 7) para emitir sus contenidos (noticieros, documentales, magazines y diversos programas temáticos). Al siguiente día, después de TV Perú, ATV (canal 9) se convierte en el primer canal privado en lanzar la señal digital llamada ATVHD con una moderna y potente tecnología, casi todo orientado a la producción y emisión de contenidos realizados únicamente con formato de alta definición (HD) en los cuales se puede contar a sus noticieros, magazines y telenovelas foráneas, contenidos con mayor audiencia de esta televisora. América TV canal 4, aún no lanza su señal en digital prevista para este año y pronto lo hará Frecuencia Latina Canal 2. Inicialmente la TV digital en este país está en proceso de emisión sólo para Lima, la capital, y progresivamente para las demás ciudades del país. Se prevee que el apagón analógico sucederá en el 2020.

En Argentina, la Secretaría de Comunicaciones de la Nación anunció oficialmente el 28 de agosto de 2009 que abandonaría la norma ATSC adoptada en 1998 y se plegaría a la norma digital Japonesa - brasileña ISDB-Tb.

El 15 de abril de 2010 comenzaron en la ciudad de Buenos Aires, las transmisiones de pruebas del Sistema Argentino de Televisión Digital, con la emisión de dos señales digitales: Canal 7 y Encuentro, ambas transmisiones del estado. El gobierno argentino instalará antes de finalizar el 2010, 47 estaciones transmisoras de TV Digital, que se localizarán en las capitales provinciales y los principales centros urbanos; previéndose una cobertura del 70% de la población del país, donde se emitirán 16 señales digitales libres y gratuitas.

En Chile, el 14 de septiembre de 2009, se anunció la adopción de la norma ISDB-Tb con MPEG 4 creado por Japón y adoptado por Brasil, debido a su mejor recepción dadas las condiciones geográficas del territorio, la posibilidad de recepción en aparatos móviles, el despliegue en la alta definición y una mayor diversidad de canales. Actualmente 7 canales chilenos transmiten con esta norma y algunos en HD: Telecanal HD, LaRED HD, TVN HD, Mega HD, [[Canal 13 HD], UCV HD y Chilevisión HD, cada uno con sus respectivas señales para teléfonos móviles "One seg".

En Venezuela, al principio se habló de la adopción de la norma china, pero más recientemente, el Gobierno ha entrado en conversaciones con su homólogo japonés ya que éste último ha señalado su disposición para la capacitación del personal necesario para la operación de señales con norma ISDB y para la transferencia tecnologíca de Televisión Digital. Venezuela anunció la adopción de la norma ISDB-Tb creada por Japón y alterada por el Brasil. Con esta decisión Venezuela se torno el quinto país a hacerlo.

En Ecuador, se ha adoptado también la norma ISDB-Tb, con fecha 26 de marzo de 2010. El anuncio le hizo el Superintendente de Telecomunicaciones, Fabián Jaramillo. Así, Ecuador se conveierte en el sexto país en adoptar el standart ISDB-Tb.

En Paraguay, a través del decreto 4.483 con fecha 1 de junio de 2010, el presidente Fernando Lugo oficializó la adopción del sistema nipón-brasileño para la televisión digital en el país. Paraguay se suma así a Brasil, Perú, Argentina, Chile, Venezuela, Ecuador y Costa Rica.

En Uruguay en un principio se seleccionó la norma europea DVB-T/DVB-H para la implantación de la televisión digital terrestre y móvil respectivamente. Pero luego de que Ecuador eligiese la norma Japonesa-Brasileña ISDB-Tb el presidente de Uruguay, José Mujica el 27 de diciembre del 2010 eligio la Norma Japonesa-Brasileña ISDB-Tb.

En Bolivia, el canciller boliviano David Choquehuanca hizo el anuncio oficial el la fecha 5 de julio de 2010 en un acto con el embajador japonés en La Paz, Kazuo Tanaka de que el sistema elegido ha sido el ISDB-Tb.

El gobierno de Colombia escogió la norma DVB, luego de varias pruebas técnicas realizadas por la Comisión Nacional de Televisión y un estudio de impacto socioeconómico realizado por la Universidad de Antioquia y por las presiones de las telefónicas y grupos económicos. El 19 de Noviembre de 2010, el Consejo de Estado publicó el fallo de la aceptación a una demanda interpuesta contra el acta 1443 de la Comisión Nacional de Televisión y ordenó que se supendiera temporalmente. Mas tarde, el 21 de Diciembre de 2010, la cuestionada Comisión Nacional de Televisión ratificó la norma europea para Colombia. Asi pues, Colombia será el único pais suramericano con la norma DVB-T.

Cabe destacar que, como ocurrió en el momento de elegir las normas de la televisión color (PAL, NTSC ó SECAM), no hay un consenso para la adopción de una norma regional para toda Sudamérica ni para el Mercosur. Pero Brasil encabeza un movimiento regional que intenta convencer los otros países de la importancia de que Latinoamérica, así como hizo Europa en su momento, se unifique bajo un solo estandár.2 Con el sistema latinoamericano de televisión digital seria facilitado el intercambio técnico, científico, de innovación tecnológica y, sobretodo, el intercambio de contenidos.





Tipos de Televisión Digital

  • TDC Televisión Digital por Cable
Se refiere a la transmisión de señales digitales a través de sistemas de televisión por cable, de tipo coaxial o telefónico.

En América Latina el principal operador de este servicio es Telmex.

En España las dos principales plataformas que emitían televisión digital por cable, AUNA y ONO, consiguieron prácticamente la digitalización de su red en 2004. En 2005, ONO tenía digitalizado el 58% y AUNA el 90% de su red, y a finales de ese mismo año ONO compró AUNA por 2.200 millones de euros. En la actualidad el grupo de cable gallego "R" está convirtiendo su cabecera en digital por lo que próximamente dará el servicio de televisión digital además de ofrecer los canales gratuitos de la TDT.

  • IPTV Protocolo de Televisión IP
En España, como en muchos países, la televisión por banda ancha es relativamente nueva. La empresa Telefónica lanzó un servicio llamado Imagenio (ahora llamado Movistar TV) que ofrece un «paquete de servicios» conocido en ese país como «trío» que incluye televisión digital, acceso a Internet mediante banda ancha y voz sobre protocolo IP (voIP). En 2006, Movistar TV alcanzó la cifra de 206.572 clientes y se espera que para 2008 llegue a un millón de usuarios. Este tipo de servicios, ha hecho que el par de cobre o hilo telefónico se consolide como una alternativa válida para recibir canales temáticos de televisión, vídeo a la carta y espectáculos o películas de pago previo (el famoso Pay Per View en Inglés). Los avances tecnológicos en el sistema ADSL (que han llevado al desarrollo y expansión de la tecnología ADSL2+ en España) permiten mayor velocidad de conexión y la transmisión de centenares de canales, además de diversas posibilidades interactivas, argumentos suficientes para que las compañías de televisión por ADSL hayan apostado por un método de difusión más económico que el cable coaxial ya que se aprovecha la infraestructura telefónica existente.

  • TDS - Televisión Digital por Satélite
Se refiere a la transmisión de señales satelitales en formato Digital. Los principales operadores a nivel mundial son Telmex, Sky, DirecTV, Telefónica y VTR.

En España, es el formato que más usuarios agrupa en la televisión por suscripción, a pesar de que ha ido descendiendo desde el año 2001. Las dos plataformas, Vía Digital y Canal Satélite Digital, debido a las pérdidas que han tenido en años anteriores, se han fusionado creando Digital+. Sus mayores ingresos los obtienen de la transmisión en directo de eventos deportivos.

En México el operador más grande de DTH es Dish; en otros países como Argentina, Chile y Colombia es DirecTV.

Formatos

La televisión digital acepta varios formatos de transmisión, a diferentes resoluciones, lo que permite a los productores de televisión crear sub canales de transmisión. A saber:
  • 480i - La imagen mide 720x480 pixeles, desplegada a 60 campos entrelazados por segundo (30 cuadros completos por segundo).
  • 480p - La imagen mide 720x480 pixeles, desplegada a 60 cuadros completos por segundo.
  • 576i - La imagen mide 720x576 pixeles, desplegada a 50 campos entrelazados por segundo (25 cuadros completos por segundo).
  • 576p - La imagen mide 720x576 pixeles, desplegada a 50 cuadros completos por segundo.
  • 720p - La imagen mide 1280x720 pixeles, desplegada a 50/60 cuadros completos por segundo.
  • 1080i - La imagen mide 1920x1080 pixeles, desplegada a 50/60 campos entrelazados por segundo (25/30 cuadros completos por segundo).
  • 1080p - La imagen mide 1920x1080 pixeles, desplegada a 50/60 cuadros completos por segundo.
Los formatos 480i, 480p, 576i y 576p, son conocidos como Definición Standard (o SD, en inglés).

Los formatos 720p, 1080i, y 1080p, son conocidos como Alta Definición (o HD, en Inglés), aunque para efectos comerciales, algunos fabricantes han acuñado el término "FULL HD" para hacer referencia exclusiva al formato 1080p. Genéricamente, se habla simplemente de HDTV para referirse a la Televisión en Alta Definición (del inglés, High Definition TV).

Gracias a esta variedad de formatos, por ejemplo, un canal de televisión puede optar por transmitir un solo programa en Alta Definición, o varios programas en definición estándar.

Todas las variantes de televisión digital pueden servir para transmitir tanto señales de definición estándar como de alta definición o HDTV.

Todos los estándares para la televisión de definición estándar son de naturaleza analógica y muchas de las estructuras de los sistemas de la televisión digital de definición estándar provienen de la necesidad de ser compatibles con la televisión analógica y en particular, la exploración entrelazada, que es un legado de la televisión analógica tradicional.

Durante el desarrollo de la televisión digital se intentó evitar la fragmentación del mercado mundial en diferentes estándares como cualesquiera de las variantes de las normas PAL, SECAM y NTSC). En cualquier caso, de nuevo no hubo acuerdos acerca de una norma única y actualmente existen tres normas mayoritarias: el sistema europeo DVB-T (Digital Video Broadcasting–Terrestrial, Difusión de Video Digital-Terrestre), el estadounidense ATSC (Advanced Television Systems Commitee, Comité de Sistemas de Televisión Avanzada) y el sistema japonés ISDB-T (Integrated Services Digital Broadcasting, Transmisión Digital de Servicios Integrados). En el caso de la televisión por cable coaxial, además de la norma ATSC, se utiliza el estándar o norma SCTE para metadatos fuera de banda.

Muchos países han adoptado el DVB, pero otros tantos han seguido el ATSC (Canadá, México y Corea del Sur). Corea del Sur, además ha adoptado la norma S-DMB para teledifusión móvil por satélite.

En el futuro, podría haber otros formatos de vídeo digital en alta resolución especializados para nuevas áreas de mercado. La norma Ultra High Definition Video (UHDV) es un formato propuesto por NHK en Japón que proporciona una resolución 16 veces mayor que la HDTV.

Cuestiones técnicas

Recomendaciones CCIR 601

Los parámetros son comunes para los sistemas de televisión de 625 y 525 líneas. En esta normativa desaparecen las incompatibilidades entre los diferentes sistemas (NTSC, PAL Y SECAM). La señal de color (cuyos componentes de color rojo, verde y azul son representados por la sigla RGB) está normalizada entre 0 y 1 voltio. En la Televisión Digital, las señales básicas se denominan Y, CR y CB. El componente Y (luminancia) de la señal de video, se define como en la Televisión Analógica:

Y = 0,299R + 0,587G + 0,114B
Sin embargo las señales básicas de diferencia de color se definen de otro modo, según las ecuaciones:

R-Y = 0,701 R - 0,587 G - 0,114 B
B-Y = 0,886 B - 0,299 R - 0,587 G
Por lo tanto, los niveles máximos de señales diferencia son:

-0,701 < r="1">
-0,886 < b="1">

Para que el margen de estas señales sea el mismo que el de la señal de luminancia, éste deberá estar comprendido entre -0,5 y +0,5 por lo que son atenuadas obteniéndose las señales diferencia de color normalizadas CR y CB, que son definidas así:

Ancho de banda

Por lo general, la televisión digital de alta resolución utiliza 1280x720 píxeles en modo de barrido progresivo (abreviado, “720p”) o 1920x1080 píxeles en modo entrelazado (“1080i”). La televisión digital estándar tiene menos resolución: 640x480 o 720x480 píxeles con NTSC, 768x576 o 1024x576 con PAL en 4:3 y 16:9 de relación de aspecto respectivamente. Pero la capacidad de un canal de televisión digital puede subdividirse en múltiples sub-canales; los televisores pueden usar estos subcanales para transmitir diversa información de vídeo, audio u otros datos, así como pueden distribuir sus llamados “bit-budget” si es necesario, como sería poner un sub-canal en resolución menor para poner otro en resolución de gran pantalla. También puede reducir el uso de múltiples canales para que la recepción sea mejor en situaciones complicadas (usuarios lejanos, móviles...). Múltiplex es como se conoce al ancho de banda de la televisión digital que puede contener múltiples sub-canales.

Recepción e Interactividad

El teletexto digital es un servicio de teletexto mejorado basado en XHTML y CSS. Algunos países, como Finlandia, usan una plataforma multimedia doméstica DVB-MHP para el teletexto digital. Una alternativa es la plataforma digital terrestre MHEG-5 que utilizan en Reino Unido. Se supone que el teletexto digital ofrece servicios interactivos, pero para esto se necesita un canal de retorno, a través una conexión a Internet, ya sea vía módem o a través de una conexión de banda ancha (como por ejemplo, ADSL). Existe también el servicio de subtitulado para sordos.

La interactividad permite una interacción, a modo de diálogo, entre el ordenador y el usuario. La interactividad otorga la capacidad al espectador de intervenir en los programas o servicios que recibe en su receptor. Es una herramienta que sin duda revolucionará la forma en que la mayor parte de la población recibe contenidos audiovisuales. Su principal ventaja radica en la posibilidad de acceder a un amplio conjunto de servicios públicos o privados a través de televisor, otra ventaja radica en que es el propio usuario el que decide si quiere o no ver los mensajes de texto que los usuarios envían a los programas.